Total de visitas: 21030
|
MATEMÁTICA
HISTÓRIA DA MATEMÁTICA

Gottfried Wilhelm von LEIBNIZ - Leipzig, Alemanha 1646-1716
Um pouco de História
Por volta dos séculos IX e VIII A.C., a matemática engatinhava na Babilônia.
Os babilônios e os egípcios já tinham uma álgebra e uma geometria, mas somente o que bastasse para as suas necessidades práticas, e não de uma ciência organizada.
Na Babilônia, a matemética era cultivada entre os escrivas responsáveis pelos tesouros reais.
Apesar de todo material algébrico que tinham os babilônios e egípcios, só podemos encarar a matemática como ciência, no sentido moderno da palavra, a partir dos séculos VI e V A.C., na Grécia.
A matemática grega se distingue da babilônica e egípcia pela maneira de encará-la.
Os gregos fizeram-na uma ciência propriamente dita sem a preocupação de suas aplicações práticas.
Do ponto de vista de estrutura, a matemática grega se distingue da anterior, por ter levado em conta problemas relacionados com processos infinitos, movimento e continuidade.
As diversas tentativas dos gregos de resolverem tais problemas fizeram com que aparecesse o método axiomático-dedutivo.
O método axiomático-dedutivo consiste em admitir como verdadeiras certas preposições (mais ou menos evidentes) e a partir delas, por meio de um encadeamento lógico, chegar a proposições mais gerais.
As dificuldades com que os gregos depararam ao estudar os problemas relativos a processos infinitos (sobretudo problemas sobre números irracionais) talvez sejam as causas que os desviaram da álgebra, encaminhando-os em direção à geometria.
Realmente, é na geometria que os gregos se destacam, culminando com a obra de Euclides, intitulada "Os Elementos".
Sucedendo Euclides, encontramos os trabalhos de Arquimedes e de Apolônio de Perga.
Arquimedes desenvolve a geometria, introduzindo um novo método, denominado "método de exaustão", que seria um verdadeiro germe do qual mais tarde iria brotar um importante ramo de matemática (teoria dos limites).
Apolônio de Perga, contemporâneo de Arquimedes, dá início aos estudos das denominadas curvas cônicas: a elipse, a parábola, e a hipérbole, que desempenham, na matemática atual, papel muito importante.
No tempo de Apolônio e Arquimedes, a Grécia já deixara de ser o centro cultural do mundo. Este, por meio das conquistas de Alexandre, tinha-se transferido para a cidade de Alexandria.
Depois de Apolônio e Arquimedes, a matemática graga entra no seu ocaso.
A 10 de dezembro de 641, cai a cidade de Alexandria sob a verde bandeira de Alá. Os exércitos árabes, então empenhados na chamada Guerra Santa, ocupam e destroem a cidade, e com ela todas as obras dos gregos. A ciência dos gregos entra em eclipse.
Mas a cultura helênica era bem forte para sucumbir de um só golpe; daí por diante a matemática entra num estado latente.
Os árabes, na sua arremetida, conquistam a Índia encontrando lá um outro tipo de cultura matemática: a Álgebra e a Aritmética.
Os hindus introduzem um símbolo completamente novo no sistema de numeração até então conhecido: o ZERO.
Isto causa uma verdadeira revolução na "arte de calcular".
Dá-se início à propagação da cultura dos hindus por meio dos árabes. Estes levam à Europa os denominados "Algarismos arábicos", de invenção dos hindus.
Um dos maiores propagadores da matemática nesse tempo foi, sem dúvida, o árabe Mohamed Ibn Musa Alchwarizmi, de cujo nome resultaram em nossa língua as palavras algarismos e Algoritmo.
Alehwrizmi propaga a sua obra, "Aldschebr Walmakabala", que ao pé da letra seria: restauração e confonto. (É dessa obra que se origina o nome Álgebra).
A matemática, que se achava em estado latente, começa a se despertar.
No ano 1202, o matemático italiano Leonardo de Pisa, cognominado de "Fibonacci" ressuscita a Matemática na sua obra intitulada "Leber abaci" na qual descreve a "arte de calcular" (Aritmética e Álgebra). Nesse livro Leonardo apresenta soluções de equações do 1º, 2º e 3º graus.
Nessa época a Álgebra começa a tomar o seu sapecto formal. Um monge alemão. Jordanus Nemorarius já começa a utilizar letras para significar um número qualquer, e ademais introduz os sinais de + (mais) e - (menos) sob a forma das letras p (plus = mais) e m (minus = menos).
Outro matemático alemão, Michael Stifel, passa a utilizar os sinais de mais (+) e menos (-), como nós os utilizamos atualmente.
É a álgebra que nasce e se põe em franco desenvolvimento.
Tal desenvolvimento é finalmente consolidado na obra do matemático francês, François Viete, denominada "Algebra Speciosa".
Nela os símbolos alfabéticos têm uma significação geral, podendo designar números, segmentos de retas, entes geométricos etc.
No século XVII, a matemática toma nova forma, destacando-se de início René Descartes e Pierre Fermat.
A grande descoberta de R. Descartes foi sem dúvida a "Geometria Analítica" que, em síntese, consiste nas aplicações de métodos algébricos à geometria.
Pierre Fermat era um advogado que nas horas de lazer se ocupava com a matemática.
Desenvolveu a teoria dos números primos e resolveu o importante problema do traçado de uma tangente a uma curva plana qualquer, lançando assim, sementes para o que mais tarde se iria chamar, em matemática, teoria dos máximos e mínimos.
Vemos assim no século XVII começar a germinar um dos mais importantes ramos da matemática, conhecido como Análise Matemática.
Ainda surgem, nessa época, problemas de Física: o estudo do movimento de um corpo, já anteriormente estudados por Galileu Galilei.
Tais problemas dão origens a um dos primeiros descendentes da Análise: o Cálculo Diferencial.
O Cálculo Diferencial aparece pela primeira vez nas mãos de Isaac Newton (1643-1727), sob o nome de "cálculo das fluxões", sendo mais tarde redescoberto independentemente pelo matemático alemão Gottfried Wihelm Leibniz.
A Geometria Analítica e o Cálculo dão um grande impulso à matemática.
Seduzidos por essas novas teorias, os matemáticos dos séculos XVII e XVIII, corajosa e despreocupadamente se lançam a elaborar novas teorias analíticas.
Mas nesse ímpeto, eles se deixaram levar mais pela intuição do que por uma atitude racional no desenvolvimento da ciência.
Não tardaram as consequências de tais procedimentos, começando por aparecer contradições.
Um exemplo clássico disso é o caso das somas infinitas, como a soma abaixo:
S = 3 - 3 + 3 - 3 + 3...........
supondo que se tenha um nº infinito de termos.
Se agruparmos as parcelas vizinhas teremos:
S = (3 - 3) + (3 - 3) + ...........= 0 + 0 +.........= 0
Se agruparmos as parcelas vizinhas, mas a partir da 2ª, não agrupando a primeira:
S = 3 + ( - 3 + 3) + ( - 3 + 3) + ...........= 3 + 0 + 0 + ......... = 3
O que conduz a resultados contraditórios.
Esse "descuido" ao trabalhar com séries infinitas era bem característicos dos matemáticos daquela época, que se acharam então num "beco sem saída\".
Tais fatos levaram, no ocaso do século XVIII, a uma atitude crítica de revisão dos fatos fundamentais da matemática.
Pode-se afirmar que tal revisão foi a "pedra angular" da matemática.
Essa revisão se inicia na Análise, com o matemático francês Louis Cauchy (1789 - 1857), professor catedrático na Faculdade de Ciências de Paris.
Cauchy realizou notáveis trabalhos, deixando mais de 500 obras escritas, das quais destacamos duas na Análise: "Notas sobre o desenvolvimento de funções em séries" e "Lições sobre aplicação do cálculo à geometria".
Paralelamente, surgem geometrias diferentes da de Euclides, as denominadas Geometrias não euclidianas.

Leonhard EULER - Basiléia, Suíça 1707-1783
https://www.gregosetroianos.mat.br
Por volta de 1900, o método axiomático e a Geometria sofrem a influência dessa atitude de revisão crítica, levada a efeito por muitos matemáticos, dentre os quais destacamos D. Hilbert, com sua obra "Fundamentos da Geometria" ("Grudlagen der Geometrie" título do original), publicada em 1901.
A Álgebra e a Aritmética tomam novos impulsos.
Um problema que preocupava os matemáticos era o da possibilidade ou não da solução de equações algébricas por meio de fórmulas que aparecessem com radicais.
Já se sabia que em equações do 2º e 3º graus isto era possível; daí surgiu a seguinte questão: será que as equações do 4º graus em diante admitem soluções por meio de radicais?
Em trabalhos publicados por volta de 1770, Lagrange (1736 - 1813) e Vandermonde (1735-96) iniciaram estudos sistemáticos dos métodos de resolução.
À medida em que as pesquisas se desenvolviam no sentido de achar tal tipo de resolução, ia se evidenciando que isso não era possível.
No primeiro terço do século XIX, Niels Abel (1802-29) e Evariste de Galois (1811-32) resolvem o problema, demonstrando que as equações do quarto e quinto grau em diante não podiam ser resolvidas por radicais.
O trabalho de Galois, somente publicado em 1846, deu origem a chamada "teoria dos grupos" e à denominada "Álgebra Moderna", dando também grande impulso à teoria dos números.
Com respeito à teoria dos números não nos podemos esquecer das obras de R. Dedekind e Gorg Cantor.
R. Dedekind define os números irracionais pela famosa noção de "Corte".
Georg Cantor dá início à chamada Teoria dos conjuntos, e de maneira arrojada aborda a noção de infinito, revolucionando-a.
A partir do século XIX a matemática começa então a se ramificar em diversas disciplinas, que ficam dada vez mais abstratas.
Atualmente se desenvolvem tais teorias abstratas, que se subdividem em outras disciplinas.
Os entendidos afirmam que estamos em plena "idade de ouro" da Matemática, e que neste últimos cinquenta anos tem se criado tantas disciplinas, novas matemáticas, como se haviam criado nos séculos anteriores.
Esta arremetida em direção ao "Abstrato", ainda que não pareça nada prática, tem por finalidade levar adiante a "Ciência".
A história tem mostrado que aquilo que nos parece pura abstração, pura fantasia matemática, mais tarde se revela como um verdadeiro celeiro de aplicações práticas.
Fonte: LISA - Biblioteca da Matemática Moderna
A MATEMATICA MODERNA

Pierre-Simon LAPLACE - Normandia, França 1749-1827
A Matemática (do grego máthēma (μάθημα): ciência, conhecimento, aprendizagem; mathēmatikós (μαθηματικός): apreciador do conhecimento) é o estudo de padrões de quantidade, estrutura, mudanças e espaço.
Um astrónomo chinês.Na visão moderna, é a investigação de estruturas abstratas definidas axiomaticamente, usando a lógica formal como estrutura comum. As estruturas específicas geralmente têm sua origem nas ciências naturais, mais comumente na Física, mas os matemáticos também definem e investigam estruturas por razões puramente internas à matemática, por exemplo, ao perceberem que as estruturas fornecem uma generalização unificante de vários sub-campos ou uma ferramenta útil em cálculos comuns. Muitos matemáticos estudam as áreas que escolheram por razões estéticas – simplesmente porque eles acham que as estruturas investigadas são belas em si mesmas. Historicamente, as principais disciplinas dentro da matemática surgiram da necessidade de se efetuarem cálculos no comércio, medir terras e predizer eventos astronômicos. Estas três necessidades podem ser grosso modo relacionadas com as grandes subdivisões da matemática: o estudo das estruturas, o estudo dos espaços e o estudo das alterações.
O estudo de estruturas começa com os números naturais e números inteiros. As regras que governam as operações aritméticas são as da Álgebra elementar e as propriedades mais profundas dos números inteiros são estudadas na teoria dos números. A investigação de métodos para resolver equações leva ao campo da Álgebra abstrata, que, entre outras coisas, estuda anéis e corpos – estruturas que generalizam as propriedades possuídas pelos números. O conceito de vetor, importante para a física, é generalizado no espaço vetorial e estudado na Álgebra linear, pertencendo aos dois ramos da estrutura e do espaço.
O ensino da geometria.O estudo do espaço se originou com a Geometria, primeiro com a Geometria euclidiana e a Trigonometria; mais tarde foram generalizadas nas geometrias não-Euclidianas, as quais cumprem importante papel na formulação da teoria da relatividade. A teoria de Galois permitiu resolverem-se várias questões sobre construções geométricas com régua e compasso. A Geometria diferencial e a Geometria algébrica generalizam a geometria em diferentes direções: a Geometria diferencial enfatiza o conceito de sistemas de coordenadas, equilíbrio e direção, enquanto na Geometria algébrica os objetos geométricos são descritos como conjuntos de solução de equações polinomiais. A teoria dos grupos investiga o conceito de simetria de forma abstrata e fornece uma ligação entre os estudos do espaço e da estrutura. A topologia conecta o estudo do espaço e o estudo das transformações, focando-se no conceito de continuidade.
Entender e descrever as alterações em quantidades mensuráveis é o tema comum das ciências naturais e o cálculo foi desenvolvido como a ferramenta mais útil para fazer isto. A descrição da variação de valor de uma grandeza é obtida por meio do conceito de função. O campo das equações diferenciais fornece métodos para resolver problemas que envolvem relações entre uma grandeza e suas variações. Os números reais são usados para representar as quantidades contínuas e o estudo detalhado das suas propriedades e das propriedades de suas funções consiste na análise real, a qual foi generalizada para análise complexa, abrangendo os números complexos. A análise funcional trata de funções definidas em espaços de dimensões tipicamente infinitas, constituindo a base para a formulação da mecânica quântica, entre muitas outras coisas.
Para esclarecer e investigar os fundamentos da matemática, foram desenvolvidos os campos da teoria dos conjuntos, lógica matemática e teoria dos modelos.
Quando os computadores foram concebidos, várias questões teóricas levaram à elaboração das teorias da computabilidade, complexidade computacional, informação e informação algorítmica, as quais são investigadas na ciência da computação.
O conjunto de Mandelbrot.Uma teoria importante desenvolvida pelo ganhador do Prêmio Nobel, John Nash, é a Teoria dos jogos, que possui atualmente aplicações nos mais diversos campos, como no estudo de disputas comerciais.
Os computadores também contribuíram para o desenvolvimento da teoria do caos, que trata com o fato que muitos sistemas dinâmicos obedecem a leis que, na prática, tornam seu comportamento imprevisível. A teoria do caos tem relações estreitas com a geometria dos fractais, como o conjunto de Mandelbrot.
Um importante campo na matemática aplicada é a Estatística, que permite a descrição, análise e previsão de fenômenos aleatórios e é usada em todas as ciências. A análise numérica investiga os métodos para resolver numericamente e de forma eficiente vários problemas usando computadores e levando em conta os erros de arredondamento. A matemática discreta é o nome comum para estes campos da matemática úteis na ciência computacional.

Blaise PASCAL - Clermont-Ferrand, França 1623-1662
|
|